Iteration complexity of feasible descent methods for convex optimization

نویسندگان

  • Po-Wei Wang
  • Chih-Jen Lin
چکیده

In many machine learning problems such as the dual form of SVM, the objective function to be minimized is convex but not strongly convex. This fact causes difficulties in obtaining the complexity of some commonly used optimization algorithms. In this paper, we proved the global linear convergence on a wide range of algorithms when they are applied to some non-strongly convex problems. In particular, we are the first to prove O(log(1/ )) time complexity of cyclic coordinate descent methods on dual problems of support vector classification and regression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iteration Complexity of Feasible Descent Methods Iteration Complexity of Feasible Descent Methods for Convex Optimization

In many machine learning problems such as the dual form of SVM, the objective function to be minimized is convex but not strongly convex. This fact causes difficulties in obtaining the complexity of some commonly used optimization algorithms. In this paper, we proved the global linear convergence on a wide range of algorithms when they are applied to some non-strongly convex problems. In partic...

متن کامل

Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: application to distributed MPC

In this paper we propose a parallel coordinate descent algorithm for solving smooth convex optimization problems with separable constraints that may arise e.g. in distributed model predictive control (MPC) for linear network systems. Our algorithm is based on block coordinate descent updates in parallel and has a very simple iteration. We prove (sub)linear rate of convergence for the new algori...

متن کامل

A family of subgradient-based methods for convex optimization problems in a unifying framework

We propose a new family of subgradientand gradient-based methods which converges with optimal complexity for convex optimization problems whose feasible region is simple enough. This includes cases where the objective function is non-smooth, smooth, have composite/saddle structure, or are given by an inexact oracle model. We unified the way of constructing the subproblems which are necessary to...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

A Feasible Directions Method for Nonsmooth Convex Optimization

We propose a new technique for minimization of convex functions not necessarily smooth. Our approach employs an equivalent constrained optimization problem and approximated linear programs obtained with cutting planes. At each iteration a search direction and a step length are computed. If the step length is considered “non serious”, a cutting plane is added and a new search direction is comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014